纳米技术与精密工程
主办单位:中华人民共和国教育部
国际刊号:1672-6030
国内刊号:12-1351/O3
学术数据库优秀期刊 《中文科技期刊数据库》来源期刊
       首 页   |   期刊介绍   |   新闻公告   |   征稿要求   |   期刊订阅   |   留言板   |   联系我们   
  本站业务
  在线期刊
      最新录用
      期刊简明目录
      本刊论文精选
      过刊浏览
      论文下载排行
      论文点击排行
      
 

访问统计

访问总数:17364 人次
 
    本刊论文
纳米孔分析化学

摘要:源于自然界,服务于人类社会的纳米尺度装置包括生物及人工制备的与纳米通道等。基于这些纳米尺度装置的简称。本文对的发展,特别是近年来在DNA测序、蛋白质分析的进展进行了综述,对于发展的历史、基本分类、原理和应用作了介绍与展望。 
中国论文网 http://www.xzbu.com/8/view-6717490.htm
  关键词:纳米通道; ; 单分子检测; DNA测序; 综述 
  1引言 
  自20世纪70年代以来,随着光学、微机电加工(MEMS)、纳米科技等的飞速进展,已经发展了一些可以使工作者在单分子水平上探索生命体系的新工具。它们主要包括原子力显微镜(AFM)、基于荧光的技术、光磁镊等,这些技术已经可以使人们探讨生命体系的结构与功能。结合传统的分析技术(例如,X射线晶体学、NMR与凝胶电泳等),单分子技术已经在探索神秘的生命体系及其过程中(例如,DNA的复制、ATP的合成、不同物质穿越细胞等)展现了曙光[1]。 
  生物体内存在各种各样的及纳米通道,它们是连接内部与外部并进行能量、物质交换的途径[2]。科学家们受细胞膜上离子通道的启发制备了多种人工体系,例如蛋白与人工固态等, 不仅促进了新型生物传感器、纳流控装置、分子过滤设备、单分子检测等方面的快速发展,而且极大地加快了第三代DNA测序研究的进步[3]。目前主要是从这些装置的形状上区分和纳米通道:被简单定义为直径在1~100 nm之间,且直径(d)≥其深度(l)的孔;如果孔的深度远远大于其直径,则称这种结构为纳米通道。目前已构建的纳米尺度装置包括生物(通道)(由各类蛋白质分子镶��在磷脂膜上组成)、固态(通道)(包括各种硅基材料、SiNx、碳纳米管、石墨烯、玻璃纳米管等)及上述两类相结合的杂化(通道)。基于这些纳米尺度装置的,均将其简称为(Nanopore analytical chemistry)或分析学(Nanopore analytics)或学(Nanoporetics)。基于的传感技术可能是最年轻的单分子技术,该技术无需标记、无需放大[4]。2简介 
  在的发展历程中,有几项工作是至关重要的。Coulter于20世纪40年代末提出了基于孔(Porebased)传感的概念,并发明了库尔特粒度仪(Coulter counter)[5]。库尔特粒度仪的测量原理相对简单(见图1a),将一个带有小孔(_SymbolmA@_m~mm)的绝缘膜分开两个电解质槽,分别插入两根电极后测量离子通过小孔时电导(电流)的变化。Coulter的发明不仅能够测定小的粒子,更重要的是可以对细胞进行分筛和计数,是历史上为数不多的、对于临床诊断与检测具有革命性意义的发明。 
  另外,1976年Neher和Sakamann采用微米玻璃管所发明的膜片钳技术,测量膜电势、研究膜蛋白及离子通道,对于研究进程具有重要的意义,两人于1991年获得生理与医学诺贝尔奖[6]。1977年Deblois和Bean采用径迹蚀刻法使库尔特粒度仪的孔径缩小到亚微米,这样可以检测纳米颗粒与病毒[7]。对于基于孔传感概念的真正的第二次革命是1996年Kasianowicz等[8]采用从金黄色葡萄球菌分泌得到的崛苎兀ㄡHemolysin)镶嵌于磷脂膜上,用于检测单链DNA(ssDNA)(图1b)。他们不仅将孔径从�m(mm)降到nm级,而且将分析对象从细胞扩展到离子与生物分子。另外,还引入了一个与化学紧密相关的问题 ―― 纳米尺度界面问题(所有分析物与或通道均有相互作用),突显了化学的重要性。该工作不仅宣布了学()的诞生,更重要的是它提供了快速、廉价DNA测序的可能性,使的研究得到了各国政府、各大公司及学术界的高度关注与投入。2001年, 物理学家们也加入到的研究中,Golovchenko等[9]采用离子束在SiN薄膜上制备固态孔。其优点显而易见,主要是经久耐用,易于集成化。近年来将生物与固态孔相结合,形成了杂化孔,有望结合两者的优点[10];另外,还将玻璃纳米管[11,12],单层石墨烯用来制备[13]。的研究是典型的交叉学科研究,目前朝气蓬勃、方兴未艾[14,15]。图2列出了一些目前研究中采用的。 
  区域和放大器电容噪声大于40 kHz的区域。首先讨论1f区域,当无外加电压时噪声是平的,主要是由热扰动引起的;当有外加电压时噪声与频率的负二次方成正比。另外,1f的斜率值与离子穿越的流量有关。第二区域是高频区域,随着频率的增加,噪音增高。在该区域,膜电容主导电流噪音平方谱,随着测量频率带宽的增大,噪音增强。通常采用模拟或数字低通滤波器来减少高频带宽所引起的噪音,但同时,测量的时间分辨率将会受到较大影响,也会影响测量信号及掩蔽分子穿越的一些重要特性,特别是掩蔽DNA测序中的结构信息及单碱基分辨率。近年来,大量的工作在于改进分子穿越的信号质量,例如,通过改进支撑膜的物质的介电性质,优化屏蔽效果可以减小膜电容;优化的设计、选择适当的支持电解质和控制外加电压等均可改进测量信号。更加详细的有关噪音的工作可参考近期的一些工作及综述[16~19]。 
  在实验中涉及到3类分辨率,它们是相互有关的,但仍需要将它们进行区别。第一类是时间分辨率,通常是由取样速度,即受测量的最大频率带宽限制。例如,采用一个10 kHz的低通滤波器来收集实验的电流数据时,最大时间分辨率大约是50 �s。第二类分辨率是电流幅值分辨率,它由每个数字化点所对应的电流决定的,依赖于放大器的门的设置。在用一种膜片钳放大器进行实验时,对于采用 
  12位的数字转化器在单位门(1 VnA)收集电流时,其电流分辨率约为1 pA。由于时间分辨率与频率带宽相关,而频率带宽确定所记录的电流的保真度,故两者是相关的。第三类分辨率是几何分辨率,较前两种容易定义,是由中最窄的部分所决定的。

特别说明:本站仅协助已授权的杂志社进行在线杂志订阅,非《纳米技术与精密工程》杂志官网,直投的朋友请联系杂志社。
版权所有 © 2009-2024《纳米技术与精密工程》编辑部  (权威发表网)   苏ICP备20026650号-8